聖彼得堡悖論是決策論中的一個悖論。
1730年代,數學家丹尼爾·伯努利(Daniel Bernoulli)的表兄尼古拉·伯努利提出一個謎題:擲硬幣,若第一次擲出正面,你就賺1元。若第一次擲出反面,那就要再擲一次,若第二次擲的是正面,你便賺2元。若第二次擲出反面,那就要擲第三次,若第三次擲的是正面,你便賺2*2元...如此類推,即可能擲一次遊戲便結束,也可能反覆擲沒完沒了。問題是,你最多肯付多少錢參加這個遊戲?
這個遊戲的期望值是無限大,即你最多肯付出無限的金錢去參加這個遊戲。但是,你更可能只賺到1元,或者2元,或者4元……那你為什麼肯付出無限的金錢參加遊戲呢?
實驗的論文解釋
丹尼爾·伯努利對這個悖論的解答在1738年的論文里,提出了效用的概念以挑戰以金額期望值為決策標準,論文主要包括兩條原理:
1. 邊際效用遞減原理:一個人對於財富的佔有多多益善,即效用函數一階導數大於零;隨著財富的增加,滿足程度的增加速度不斷下降,效用函數二階導數小於零。
2. 最大效用原理:在風險和不確定條件下,個人的決策行為準則是為了獲得最大期望效用值而非最大期望金額值。
2009年7月21日 星期二
訂閱:
張貼留言 (Atom)
0 意見:
張貼留言